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The Cauchy-Poisson problem for 
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(Received 25 April 1968) 

The axisymmetric, free-surface response of a semi-infinite viscous liquid to either 
a point impulse or an initial displacement of zero net volume is calculated. The 
asymptotic disturbance is resolved into three components: (i) a damped gravity 
wave, which represents a primary balance between gravitational and inertial 
forces with secondary, but cumulative, modification by viscous forces; (ii) a 
diffusive motion, which represents a balance between viscous and inertial forces; 
(iii) a creep wave, which represents a balance between gravitational and viscous 
forces. Van Dorn has suggested that the results may be relevant to the concentric 
circular ridges that surround the crater Orientale on the Moon. 

1. Introduction 
Van Dorn (1968) has suggested that the concentric circular ridges that sur- 

round the crater Orientale at  lat. 20"s. and long. 95" W. on the Moon may have 
been initiatedasgravity waves on aviscous liquid under the impact of a meteorite. 
Testing the plausibility of this conjecture would require not only the solution 
of the Cauchy-Poisson problem for a viscous liquid, but, as minimum data, 
estimates of the viscosity of the material and of the ultimate shear stress (above 
which the material might behave as a liquid) ; unfortunately, reliable estimates 
do not appear to be available at this time. Nevertheless, it  does appear worth 
while to obtain a formal solution of the problem and to examine its qualitative 
features vis-6-vis the classical problem. 

The transient development of one-dimensional surface waves on a viscous fluid 
has been considered by Sretenskii (1941), and the basic motions that such a 
development comprises were discussed by both Basset (1888, 3 520-2) and 
Lamb (1932, $349; Lamb concluded with the statement: 'By a proper synthesis 
of the various normal modes it must be possible to represent the decay of an 
arbitrary initial disturbance'). These basic motions may be classified into three 
types: (i) damped gravity waves, which represent a primary balance between 
gravitational and inertial forces with secondary, but Cumulative, modification 
by viscous forces; (ii) diffusion, which represents a primary balance between 
viscous and inertial forces; (iii) creep, which represents a primary balance 
between gravitational and viscous forces. The relative importance of these 
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motions for a particular initial configuration depends essentially on the viscous 
length 1 sz g-sv+, 

where g is the acceleration of gravity and v is the kinematic viscosity. 
We consider a free-surface motion that stems either from an initial displace- 

ment of vertical scale d and lateral scale u or from an impulse of magnitude d and 
lateral scale a. We neglect surface tension, T ,  on the hypothesis that the capillary 
length is negligible: 

The available similarity parameters then are 

1’ = (T/pg)* < max (1, u}. 

ail = ((ga)*a/v}+ z 2ha = R+, 

(1.2) 

(1.3) 

(we find h and the Reynolds number R convenient in $5 below), d/a,  and 

?J/(sa)+ = (I/pa3)/(ga)*, (1.4) 

where v is an equivalent impact speed (we do not assume conservation of momen- 
tum in the impact, so that v and I may not be simply related to the speed and 
momentum of the impacting body). 

The classical, Cauchy-Poisson problem for the response of an inviscid liquid 
to a concentrated (a --f 0) impulse or displacement yields an asymptotic represen- 
tion of the free-surface displacement in the form 

6(r, t )  N A (r ,  t )  cos w + B(r, t )  sin w ,  ( 1 . 5 ~ )  

where w = gt2/4r 3 00, (1.5b) 

and A and B are slowly varying functions of r and t. Referring to Lamb’s (1932, 
§ 349) discussion of the basic motions enumerated above, we may incorporate 
the dominant effect of a sufficiently smallviscosity by neglecting motions of types 
(ii) and (iii) and multiplying the right-hand side of ( 1 . 5 ~ )  by the damping factor 

where 

( 1 . 6 ~ )  

( l .6b)  

is the wave-number of stationary phase. Having this result, we seek to determine 
more precisely those conditions under which motions of types (ii) and (iii) are 
either negligible or significant in comparison with the damped gravity wave and 
to determine the modification of the damping factor of ( 1 . 6 ~ )  for an initial dis- 
placement of zero net volume. 

Our study having been induced by reference to an impact of cataclysmic 
magnitude, it seems necessary to consider the implications of the hypothesis of 
small disturbances, without which significant mathematical progress would be 
impossible. Strictly speaking, this hypothesis is equivalent to the restrictions 

d < max ( I ,  a>, TI< max ((gu)*, (g1)”; (1.7a, b)  

however, both intuitive considerations and observational data for underwater 
explosions (Cole 1948) suggest that events at  sufficient distances from the point 
of impact may be adequately described by ignoring the details of the impact (or 
explosion) and starting from the assumption of an initial cavity, the details of 
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which must be inferred from both observation and empirical considerations. It 
seems quite unlikely, on the other hand, that the effects of an impact can be 
adequately represented by the assumption of a prescribed impulse unless (1.7 b) 
is actually satisfied. The formal solution for a point impulse is, nevertheless, of 
interest both as a preliminary example that yields an especially interesting creep 
wave and for direct comparison with experiments in actual, viscous liquids. 

2. Formulation of problem 
We consider a liquid that fills the half-space x > 0 ( z  is positive downwards), 

is at rest for t < 0 ,  and is subjected to a free-surface impulse p$,(r) and free- 
surface displacement <,(.) (positive downwards) at t = 0. Letting 

p(r ,  2 ,  t )  = p9t(r, 2 ,  t )  (2.1) 

be the pressure (we follow Lamb's convention for the sign of the potential $) 
and r$(r, z ,  t )  be a Stokes stream function, such that the radial and downward 
components of the particle velocity q are given by 

u =  - 4  T +$ a ,  w = - $ a - ~ - ' ( ~ $ ) v )  (2.2) 

and invoking the hypothesis of small disturbances, we find that the continuity 
and (linearized) Navier-Stokes equations, 

imply 

and 

(2.3) 
( 2 . 4 ~ )  

(2.4b) 

The initial conditions are 

$(r ,  O> O )  = 6(r, O) = d(r)' (2.5) 

The total impulse (positive downwards) delivered to the surface at t = 0 is given 

The potential energy associated with the initial displacement is given by 

E, = ? ipg Im c t ( r ) rd r ,  

som <,,(r)rdr = 0 

0 
where &(r )  satisfies the constraint 

(2.6) 

(2.7) 

if the displaced volume vanishes identically. 
Invoking the requirements of kinematic and dynamical equilibrium at the 

disturbed free surface, z = c(r,  t ) ,  we obtain the linearized boundary conditions 

Ct = w, ( 2 . 9 ~ )  

$4+g<-2vwz = 0, (2.9b) 

( 2 . 9 ~ )  v (u ,  + wr) = 0. a,nd 
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We may satisfy these boundary conditions of z = 0, rather than z = 5, without 
introducing an error greater than that already implicit in the linearization of the 
equations of motion. 

3. Formal solution 

with the aid of the following Laplace and Hankel transformations: 
We obtain a formal solution to the problem posed in the preceding section 

{z,Q, W> = Sm e-stdsJm { < , q 5 , w ) ~ ~ ( k r ) r d r ,  

{Y, U }  = 0 e - s ~ d r S ~ { ~ , ~ } J ~ ( k r ) r d r ,  

( 3 . 1 ~ )  

(3.lb) 

0 0 

and 

Carrying out the corresponding transformations of (2.2), (2.4) and (2.9), we 
obtain u = ~ C D  +Ira, w = - as- w, (3.3) 

@,,-k2@ = 0, ~ , - K 2 Y  = 0, (3.4) 
s z -  w = 2, (2  = O), (3.5a) 

s @ + g 2 - 2 v w ,  = CD, (2 = O), (3.5b) 

and Us- kW = O ( Z  = 0), (3.5c) 

where K = {k2+  ( S / V ) } &  ( 9 K  2 0). (3-6) 

Invoking the requirement that both and Y be bounded as z+co, we pose 
the solution to (3.4) in the form 

CD = A ( ~ , k ) e - ~ ” ,  Y = B ( s , k ) e - ~ ”  ( z  2 0 ) .  (3-7) 

U = kAe-kz-KBe-K”, W = l ~ ( A e - ~ ” - B e - ~ ” ) ,  (3.8) 

Substituting (3.7) into (3.3) and (3.5), we obtain 

and the matrix equation 
M .  { Z ,  A ,  B )  = ( 2 0 ,  @0, O } ,  

where 

- k 

Solving (3.9) for 2, we obtain 

(3.9) 

(3.10) 

(3.11) 

where D(s, k )  = (S + 2vk2)’ - 4&k3(s + vk2)* + g k .  (3.12) 

We satisfy the requirement that the real part of the radical K be non-negative 
by cutting the s-plane along s = [ - CO, - vk2] and choosing the positive square 
root along s = ( - vk2, co). We then find that D has two, and only two, zeros in 
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the cut plane, both of which lie in 93's < 0 (see $ 4  below); accordingly, we may 
choose the path of integration for the inverse Laplace transformation along 
92s = 0 to obtain the formal solution 

(3.13) 

where Z is given by (3.11) and (3.2). We notice that the effects of surface tension 
could be included simply by multiplying gk by 1 + (k1')2 in (3.11) and (3.12). 

4. Point-impulse problem 
We assume, in this section, that the radius of the area over which the impulse 

I is applied is negligible compared with the viscous length I and that the initial 
displacement vanishes identically. Invoking these hypotheses, together with 
(2.6), in (3.2), we obtain 

Zo(k)  0, cDo(k) = 1/2np vlh, (4.1) 

where Z is defined by (1.1) and h is an appropriate vertical scale. Substituting 
(4.1) into (3.1 1) and (3.13) and introducing the dimensionless quantities 

7 = r / l ,  7 = (g/Z)+t, a = kl, cr = (Z/g)*s, (4.2) 

(4.3) and A( r ~ ,  a) = ( l / g ) B ( ~ ,  k) = ((T + 2a2)2 - 4a3(g + a2)* + a, 

we obtain 

where 

r m  

(4.4) 

(4.5) 

We seek the asymptotic behaviour of 6 as T -+ 00. 

contributions to x from the two poles determined by the dispersion equation 
Deforming the path of integration in the cr-plane in the usual way, we obtain 

A ( a , g )  = 0, CT = CT+(CI), (4.6) 

and from the two sides of the cut along cr = [ - co, - a2]. The zeros of A in this cut 
plane are (cf. Lamb 1932, $349) complex conjugates in 9 c r  < 0 for 

0 < a < ac = 1.20, 

negative real in ( - a2, 0) for a > ac, and analytic functions of a in a complex-a 
plane cut along a = [O,ac] .  Their numerical values are plotted in figure 1. 
Invoking Cauchy's residue theorem to obtain the contributions of the poles to 
x and introducing the change of variable 

cr = -a2(1+x2)+iO, (cr+a2)* = Aiax 

on the upper and lower sides of the cut, we obtain 

euT 8a4 exp { - (1 + x2)  a2r)x2dx 
X ( T , a )  = u=uk (aA/acr) n I,, ( 1 + ( 1  16a6x2' (4.7) 
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The dominant contributions to the integral (4.4) as 7+00 must come from the 
neighbourhoods of a = 0 and a = 00 since the integrand is exponentially small at 
intermediate values of a.7 The limiting forms of c*(a)) as determined by (4.3) 
and (4.6), are given by 

gk = +ia.:;-2a2+O(aY) (a+O), (4.8a) 

c+ N -&~-‘+o(a-~), r ~ -  N -0*93a2+O(a-l) (a+00). (4.8b, c )  

0 

FIGURE 1. The roots of the dispersion equation (4.6) ; = IT? f i c ~ ~  for 0 < a < 1.20. 

Substituting these approximations and the corresponding approximations to 
aA/an, as determined from (4.3), into (4.7) and approximating the x-integral 
with the aid of Watson’s lemma, we obtain 

x N a-+ exp { - 2a27} sin (ab) (1 + O(a%)) - 2 ( d ) - 4  a exp { - a%-} { 1 + O ( ~ / T ) )  

(T+0O, a+O) (4.9a) 
N &-~exp{-~( . r /a)}(1 + O ( x 3 ) }  (T+CO, a+co). (4.9b) 

Invoking these approximations in (4.4), we place the result in the form 

c -  C g + C d + Q  ( T - - f r n ) ,  (4.10) 

where (4.11) 

is the asymptotic approximation to the contributions of the complex-conjugate 
poles and represents a damped gravity wave; 

t The subsequent, asymptotic development makes free use of the methods described 
by Copson (1965). 
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is the asymptotic approximation to the contribution of the continuous spectrum 
of the cut, CT = [ - 03, - a2], and represents an essentially diffusive disturbance; 

Q = 4 q  Jo(a7) exp { - *(r/a)}du (4.13) 

is the asymptotic approximation to the contributions of the negative-real poles 
and represents a creep wave. We observe that our definition of a damped gravity 
wave is precise by virtue of the requirement that CT* be complex. The distinction 
between diffusive and creeping disturbances is sharp only for r -+ 03: in particular, 
the disturbance associated with CT- in a > a, is distinctly diffusive as a+co 
(in which limit it is also negligible), but is essentially identical with that associ- 
ated with CT+ as a -+ a, + . 

Carrying out the stationary-phase approximation to (4.1 I) ,  which is equivalent 
to a saddle-point approximation to the oscillatory component, 0 < a < a,, of 
(4.4), we obtain 

and m 

0 

N 2-%hr3q-*exp ( -+r57-*) sin ( & ~ ~ r - ~ )  
= 2*hq-%w* exp { - 2(r/v2) w2} sin w ,  

(1 < 7 =g 7 < 7'7 ( 4 . 1 4 ~ )  

(4.14b) 

where w is the similarity variable of (1.5 b). 
Invoking the Hankel-transform pairs $8.3 (5) and $8.2 (53) in the tables of 

Erddyi, Magnus, Oberhettinger & Tricomi (1953)) we evaluate the integrals in 
(4.12) and (4.13) as follows: 

Kd = 2h(n+-t (a/&-) Jo(a7) exp { - a27}ada ( 4.1 5 a) 

= h(n~7)--t{i - (y2/47)} exp ( - y2/47) (4.15 b) 

and cc = 2 h ( a / a ~ ) / ~  Jo(ay) exp (-7/4a) sinh (7/4a)ada ( 4 . 1 6 ~ )  
0 

= h'T1(a/a7) {7Ji([V14) K1([771)*) (4.16b) 

= hY-lY{Jo(Y) - Jl(74 KllW ( 4.1 6 c) 

(4.16d) 

where y = ( T T ) ~  = (grt/v)*. (4.17) 

The disturbance described by (4.14) tends to the classical, Cauchy-Poisson 
solution of the point-impulse problem (Lamb 1932, $255) as ~2/r+co  with w 
fixed, in which limit it appears as a true similarity solution in the variable w and 
represents a balance between gravitational and inertial forces. It dominates both 

and Q in 1 < r < 7 < r2 but ultimately decays quite rapidly as r-+w with 7 
fixed. It is plotted in figure 2 for 7 in the neighbourhood of the maximum of the 
envelope (the coefficient of sin w ) ,  namely 

2-%+q-*exp ( - 3 ~ ~ 7 - ~ )  = 0.518h/r2 at 7 = qwL = ( Q T ~ ) , .  (4.18) 

The accuracy of the asymptotic approximation may be poor for 7 < r,, [in 
consequence of the approximation (4.8u)], but we expect it to  be qualitatively 
valid. 

24h e-y  cos y{l + O(y-l)}, 
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The disturbance described by (4.15) is a similarity solution in the variable 
q2/r and represents the diffusion of vorticity under the action of viscous and 
inertial forces. It is negligible for r 9 1, even though it dominates both Cg and 
Q if 7-1 < 7 < d. 

7 

FIGURE 2.  The asymptotic form of the gravity wave generated by a point impulse, as 
given by (4.14) for T~ = 4, 12 and 20; f; is positive downwards. 

The disturbance described by (4.16) is a similarity solution in the variable y 
and represents a balance between gravitational and viscous forces. It dominates 
both and Q if 7 = O(7-l) and is especially interesting for a very viscous fluid. 
It is oscillatory in character, but the resulting wave pattern is damped a t  the 
asymptotic rate of l / e  per cycle. It is plotted as a function of the similarity 
variable y in  figure 3a and as a function of 77 in figure 3 b. The latter plot gives a 
linearly scaled representation of the subsiding cavity, although it must be re- 
called that the asymptotic approximation (4.13) is not uniformly valid as 

We conclude that the free-surface response of a viscous liquid to an impulse is 

(i) a gravity-wave zone, r < 7 < r2, in which 5 - Q = O(hr3/q4); 

T+O.  

asymptotically separated into three, distinct zones : 
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(ii) a null zone, 7-1 < 7 < 7, in which each of t;B, Q and Cc is small in conse- 

(iii) a creep-wave zone, 7 = O ( T - ~ ) ,  in which 1: - Q = O(h/r). 
quence of the joint action of diffusion and dispersion; 

The scales of Q and I& as functions of 7 for fixed T 3 1 are SO disparate that it is 
not feasible to compare them in a common plot. 

79 
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0.6 

0s 

1 .o 
FIGURE 3a. The asymptotic 
generated by a point impulse, 
solution (4.16); 6 is positive 

form of the creep wave 
as given by the similarity 
downwards. 

FIGURE 3b.  The asymptotic form of the 
creep wave generated by a point impulse, 
as given by thesimilarity solution (4.16); 
5 is positive downwards. 

5. Initial-cavity problem 
We now consider the disturbance produced by the initial displacement (see 

figure 4) 

which represents a cavity with a lip such that the volumetric constraint of (2.8) 
is satisfied and 

Substituting (5.1) into (3.2) and invoking $8.3(5) in Erdhlyi et al. (1953), we 
obtain 

Substituting (5.3) into (3.11) and (3.13) and introducing the dimensionless 
quantities of (4.2), (4.3) and (1.3), we obtain 

Q(r)  = d exp { - (r/a)2} (1 - k/aI2}, (5.1) 

E, = Qnpgd2a2. ( 5 4  

Z,(k} = ~da2(ku)2exp(-$(ka)2} (@, = O).- 15.3) 

where 

Comparing (5.5) with (4.5) and invoking (4.9), we obtain 

x1(7,4 = a Trn x(7, "Id7 
r T  

N exp { - 2a27} cos (ah) { 1 + O(&)} 

- exp { - 4(7/a)} { 1 + O ( r 3 ) }  

- 2(ar3)-% exp { - a27) (1 + O(a/7)) (7+00, a+ 0)  
( 7 3  00, a -+ 00). 

(5.4) 

(5.5) 

(5.6a) 

(5.6b) 

( 5 . 6 ~ )  
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Substituting (5.6b, c )  into (5.4), letting r-fco, and decomposing the asymptotic 
representation as in (4.10), we obtain 

Cg = 2h2d J,(a$)exp{-(h+27)a2}~0~(a-27)a3da, ( 5 . 7 )  

(5.8) 

(5.9) 

!OW 

Q = - 2 A 2 d ( ~ ~ 3 ) - *  

cc = 2nzd~~~J,(al l )exl , ( -ha2-:(r /a)}a3dz.  

J,(cc~) exp( - ( A  + 7)a2)a3da, 
J O *  

I 

FIGURE 4. The cavity and lip described by (5.1). The volumetric displacement in 1' > a 
(the lip) is equal and opposite to that in T < a (the cavity). 

I - 0.2 /T 

0 1 2 3 4 5 

vla 
FIGURE 5 .  The asymptotic response of an inviscid liquid to  the initial displacement of 

figure 4; 5 is positive downwards. 
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Evaluating the integrals of (5.7) and (5.8) as in $4 and approximating that in 
(5.9) by Laplace’s method, we obtain 

&, N - 2 - ~ A z ~ 7 6 7 - 7 e x p ( - ( A + 2 ~ ) ( ~ / 2 v ) 4 } c ~ ~ ( ~ ~ z ~ - 1 )  (5.10) 

(5.11) 

and cC - ~ ( ~ ~ ) : d h 9 7 ~ ~ ( ~ ( 7 / 4 h ) ~ ~  exp { - $ ( & ~ ) ) 5 } .  (5.12) 

(1  < 7 < 7 < ?), 
- h2d(h +7)-2(7r73)-9 (1 - i ( A  + ~ ) - ~ q ~ } e x p  { - i ( A  +7)-lv2}, Cd 

rla 

FIGURE 6a.  The asymptotic response of a viscous liquid to the initial displacement of 
figure 4 for gta/a = 8 and R = 10, 100 and co; 5 is positive downwards. 

1 I I I I I I I I 
0 0 5  1.0 1.5 2.0 7. j 

?/a 

FIGURE 6 b .  The asymptotic response of an inviscid liquid to the initial displacement of 
figure 4 for gtz/a = 16 and R = 10, 100, and co; 5 is positive downwards. 

Fluid Mech. 34 24 
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The approximations (5.11) and (5.12) are uniformly valid with respect to 7 for 
fixed A, but (5.12) is not uniformly valid as A+O. We again may identify &,, 

and Q as a damped gravity wave, an essentially diffusive disturbance, and a 
creep wave, respectively, but only (5.11) as a similarity solution. Both Q and 
Q are asymptotically negligible for all 7 as T+OO with A fixed, and there is no 
counterpart of the creep-wave zone of the point-impulse problem unless h < 1. 
The results for A < 1 are similar to those for the point-impulse problem. 

Restoring the original variables in (5.10), we place the result in the form 

l&/d N - 2-" 2w,[ 3 -, exp { - (&& + 4R-lwE) [-') cos (w , / [ )  ( 2 R - i ~ ~  < < 4 4 ,  
(5.13) 

where w, = gt2/4a, < = r/a,  (5.14) 

and R is given by (1.3). The result (5.13) is plotted in figure 5 in the inviscid 
limit ( R  = a) with w, as a parameter and in figures 6 a  and 6 b  with R as a 
parameter. 
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